Hierarchical Corrugated Core Sandwich Panel Concepts
نویسندگان
چکیده
The transverse compression and shear collapse mechanisms of a second order, hierarchical corrugated truss structure have been analyzed. The two competing collapse modes of a first order corrugated truss are elastic buckling or plastic yielding of the truss members. In second order trusses, elastic buckling and yielding of the larger and smaller struts, shear buckling of the larger struts, and wrinkling of the face sheets of the larger struts have been identified as the six competing modes of failure. Analytical expressions for the compressive and shear collapse strengths in each of these modes are derived and used to construct collapse mechanism maps for second order trusses. The maps are useful for selecting the geometries of second order trusses that maximize the collapse strength for a given mass. The optimization reveals that second order trusses made from structural alloys have significantly higher compressive and shear collapse strengths than their equivalent mass first order counterparts for relative densities less than about 5%. A simple sheet metal folding and dip brazing method of fabrication has been used to manufacture a prototype second order truss with a relative density of about 2%. The experimental investigation confirmed the analytical strength predictions of the second order truss, and demonstrate that its strength is about ten times greater than that of a first order truss of the same relative density. DOI: 10.1115/1.2198243
منابع مشابه
Improving the Performance of the Sandwich Panel with the Corrugated Core Filled with Metal Foam: Mathematical and Numerical Methods
A new type of composite structure with a metal foam is reinforced by the metal corrugated core, called metal-foam-filled sandwich panel with a corrugated or V-frame core, is modelled, simulated, and studied in this article. All types of samples with different relative densities of the foam are tested and analyzed under the drop hammer load. The sandwich panel included two aluminium face-sheet, ...
متن کاملOptimal Design of Sandwich Panels Using Multi-Objective Genetic Algorithm and Finite Element Method
Low weight and high load capacity are remarkable advantages of sandwich panels with corrugated core, which make them more considerable by engineering structure designers. It’s important to consider the limitations such as yielding and buckling as design constraints for optimal design of these panels. In this paper, multi-objective optimization of sandwich panels with corrugated core is carried ...
متن کاملWave Propagation in Sandwich Panel with Auxetic Core
Auxetic cellular solids in the forms of honeycombs and foams have great potential in a diverse range of applications, including as core material in curved sandwich panel composite components, radome applications, directional pass band filters, adaptive and deployable structures, filters and sieves, seat cushion material, energy absorption components, viscoelastic damping materials and fastening...
متن کاملNon-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading
In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geo...
متن کاملNon-linear Response and Dynamic Buckling Analysis of a Cylindrical Sandwich Panel with a Flexible Core under Blast Loading
In this paper, three-dimensional displacement response of a cylindrical sandwich panel with compressible core under the action of dynamic pulse loading is addressed using the extended high order sandwich panel theory. Also, local dynamic pulse buckling of facesheets is studied by considering the Budiansky-Roth buckling criterion. It is assumed that the sandwich panels consist of orthotropic fac...
متن کامل